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Chatter is a self-excited vibration which depends on several parameters such as the
dynamic characteristics of the machine tool structure, the material of the work piece,
the material removal rate, and the geometry of tools. Chatter has an undesirable effect on
dimensional accuracy, smoothness of the work piece surface, and the lifetime of tools and
the machine tool. Thus, it is useful to understand this phenomenon in order to improve
the economic aspect of machining. In the present article, first the theoretical study and
mathematical modeling of chatter in the cutting process were carried out, and then by
performing modal testing on a milling machine and drawing chatter stability diagrams,
we determined the stability regions of the machine tool operation and recognized that
witch parameter has a most important effect on chatter.
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1. Introduction

Chatter is a self-excited vibration which occurs if the chip width is too large with
respect to the dynamic stiffness of the system. Variable forces generated during the
machining operation leads to vibrational excitation of the tools and workpiece and
as a result, the surface of the workpiece becomes wavy. In the next machining stage,
if the generated wavy surface is not in phase with the wavy surface of the previous
stage, the thickness of the chip becomes variable and it will lead to a change in
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the shear force. The change in the shear force will change the energy entering the
system – including tools and workpiece.

And if the system does not have the capacity for the extra energy input, it will
start vibrating which is referred to as chatter. Chatter vibration has an exponential
growth in amplitude over time, and this continues until the tool is separated from
the workpiece or that it breaks. This phenomenon can be distinguished by its sound
or its marks on the workpiece surface.

Machining with chatter is in most cases an unwanted phenomenon, since it has
an adverse effect on the surface of the workpiece and besides, it may break the
tools or other parts of the machine tool. Therefore, the cutting width and material
removal rate must be below the limit at which chatter occurs. From this perspective,
chatter is a factor decreasing material removal rate before it is limited by the power
and moment of the machine tool.

The simplest theory for calculating the cutting force which has been used in
studying the stability of machining processes was founded by Tlusty [11]. Rao et
al. [2] presented a cutting force model of oblique turning process and used it for
drawing chatter stability diagrams. Baker and Rouch [3] used a finite element model
for analyzing the stability of the turning process. In references [4–7] the effect of tool
wear parameter on chatter has been examined. Tang [5] controlled chatter in the
turning process by placing piezoelectric actuators on the tool. Liao [6] controlled
chatter using a system for automatic spindle speed regulation. Pan et al. [7–12]
developed an intelligent system for controlling chatter in the turning process using
neural networks.

The width of the chip is the most important factor which plays a crucial role
in generating chatter vibration. If chip width is small enough, machining will be
stable. With the increase of material removal width, chatter starts at a b limit
and will be very severe for chip widths larger than this. The critical chip width
depends on some factors such as the dynamic characteristics of the machine tool
structure, the material of the workpiece, material removal rate, and the geometry
of tools [8]. A negative cutting angle will increase the possibility of chatter, since
the direction of cutting force with the negative cutting angle of tools will be mostly
along the direction of vibration. The effect of the relief angle of the tool on the
occurrence of chatter is displayed in the figure. Since the tool moves on a wavy
surface, the relief angle (the angle in the above figure) is always changing and in
location B where the relief angle is negative, much energy is lost from the system
due to the contact between the tool and the workpiece. This phenomenon has been
discussed as process damping [13] and is more noticeable at lower cutting speeds,
since at higher cutting speeds the wavelength of oscillations increases and assuming
the constancy of the vibration amplitude, the slope of the oscillations decreases and
thus there will be less change in the relief angle [8–15].
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2. Results and Discussion

2.1. Modeling a Fixed-Hinged Beam with Cutting Tool in the Middle of
the Beam

The work piece studied in this article is a fixed-hinged beam; thus considering the
new conditions, a support is obtained for the beam using the following equations:
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where θ2 and θ3 are the rotations of the beam in the 2 and 3 directions, U2 and
U3 are displacements of the beam in the 2 and 3 directions, M2 and M3 are the
bending moments in these two directions, V2 and V3 are the shear forces in these
two directions novel method based on CEEM method to model five-axis cutting
force.

3. Solving the Equations Governing the Beam

The studied beam is a steel beam with 1m length and 1cm×2cm rectangular cross-
section. We take the vector of unknowns as[

U2 U3 θ2 θ3 M2 M3 V2 V3
]

and use the method of separation of variables in order to solve the equations. That
is:

z (x, t) = z(x)eiωτ (2)

The dynamic equations of the system consisting of 8 equations varying with time and
space are solved using the method of separation of variables with respect to time
and space. The dynamic effect of the temporal term appears in these equations
in the form of a frequency term. By eliminating the temporal dependence from
dynamic equations governing the behavior of the system, we arrive at 8 spatial
equations for positions along the beam which can be solved by applying boundary
constraints (conditions) with respect to space which are given in Fig. 4.2(a).
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The solution method involves dividing the length of the beam into equal parts.
For any i-th point along the beam a corresponding vector is defined as follows:

Z =
[
U2 U3 θ2 θ3 M2 M3 V2 V3

]T
(3)

The spatial equations governing the behavior of the system are rewritten as a
function in the form of a matrix. In the numerical solution, the Runge Kutta method
is responsible for predicting the vector of unknowns and the Adams-Moulton method
is responsible for correcting these predictions and of course solving the vector of the
unknowns of all the points on the beam. The matrix form of the 8 dynamic equations
is as follows [9]:
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For any point, the vector Zi = C1Zi
1 + C2Zi

2 + . . . C8Zi
8 corresponds to the i-th

solution of the governing differential equation, In other words, Z is of the form
z = [k]C. At the beam, considering the physical constraints governing it, is as
follows:
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(5)

The first four coefficients of the solution model are equal to zero:

C1 = C2 = C3 = C4 = 0 (6)

Using the superposition method and by applying eight boundary conditions at
the tip of the beam and integrating for each of these conditions along the beam
using a predictor-corrector algorithm, the K matrix is obtained at the end of the
beam. By applying the boundary conditions at the end of the beam as given below,
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we arrive at the following equations:

k15C5 + k16C6 + k17C7 + k18C8 = 0

k25C5 + k26C6 + k27C7 + k28C8 = 0 (8)

k35C5 + k36C6 + k37C7 + k38C8 = 0

k65C5 + k66C6 + k67C7 + k68C8 = 0

The condition for the above homogeneous system (of the form K[C] = 0) to have
a solution is that the determinant of matrix [K] equals zero. The result of this
condition implies that det[K] = 0 is a function of ω. The natural frequencies of
the model are obtained by numerically solving these equations. The figure below
displays the diagram of changes that has been estimated at the points where this
function meets the horizontal axis, and of course these frequencies are the natural
frequencies of the system.

Figure 1 det(w) vs. w

The following diagram shows the variation of the first frequency of the beam with
the load applied at the end of the beam. According to the figure, the point where
frequency reaches zero corresponds to the critical force for the buckling phenomenon.
In the proposed model, the load applied at the end of the beam is the same as the
load generated by the mandrel.

Figure 2 The natural frequency of the system in p (power) for finding

After numerical solution of the system, four natural frequencies are obtained and
ultimately the mode shapes related to each of these frequencies are drawn which,
correspond to beam displacement and beam and bending.
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Figure 3 Mode shapes and (displacements in the 2 and 3 directions)

Figure 4 Mode shapes related to rotations θ2 and θ3

Figure 5 Mode shapes related to bending moments M2 and M3

Figure 6 Mode shapes related to shear forces V2 and V3
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3.1. The Dynamic Equations Governing the Behavior of the Cylindrical
Work piece

In the next stage of system simulation, a cylindrical work piece with length and
radius has been used instead of a work piece with a rectangular cross-section, and
in this situation the equations governing the dynamic behavior of the system are
simplified as follows:
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By arranging the equations governing the cylindrical beam under the load we
have:
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Or in the general form of
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Considering the generalized principle of virtual work, we have∫ 1
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Finally, by simplifying and integrating the above relations we come to the following
relation: ∫ k
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Where the number of vibrational modes is used which are obtained by solving the
free vibration of the system corresponding to each of the displacements, rotations,
moments, and shear forces. The vector form of the equation is as:

A
d2f

dτ2
+B

df

dt
+ Cf = D∆T (16)

So that in the above relations we have:

A = [aij ] , B = [bij ] , C = [cij ] , D = [dij ] (17)
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By providing a computer code for solving the system using the algorithm presented
above, and are obtained which correspond to the mass and fitness of the system.
Considering the way of aligning the tool relative to the workpiece, we expect the
first mode shape of the beam to be excited and the effect of the following mode
shapes to be insignificant in comparison with the effect of the first frequency. Thus,
by eliminating the effect of higher frequencies, we can assume the model of the
workpiece as a system with one degree of freedom. Considering the fact that the
value of for the first frequency is equivalent to the mass of the system with one
degree of freedom and the value of is equivalent to the stiffness of the system with
one degree of freedom, we can assume that the system has a damping coefficient. In
this model, the damping coefficient for the cutting dynamics has been empirically
obtained; thus, our workpiece model is a simple mass-spring-damper model. It must
be noted that since the piece is cut at the middle, the first frequency is excited and
the subsequent effects are eliminated.

4. Mechanisms of Chatter Phenomenon in Machining

Self-excited vibrations in machine tools are due to two fundamental mechanisms,
mode coupling and regeneration of waviness, and in this section we will explain
these mechanisms.

4.1. Mode Coupling Effect

Self-excited vibrations due to mode coupling occur when there are vibrations be-
tween the tool and the workpiece at the same time and in two different directions.
As can be seen in the figure, the tool and its support are modeled as a concentrated
mass, m1, and two springs, Ak1 and k21, orthogonal to one another. If we as-
sume that the movement of the workpiece is from right to left and the tool is fixed,
clearly the shear force will lead to vibrational motion in two orthogonal directions
with different amplitudes, and as a result the tool tip will move in an elliptical path.
Now, taking into consideration the shape and direction of the tool tip inside the
workpiece, for a part of the path where the tool tip travels the distance from A to B
(considering the direction of the shear force), the direction of the force is opposite
to the displacement and it will lead to energy loss. In the second part of the path
for the cycle to become complete, the tool tip travels the distance from B to A. In
this part of the path, the direction of the shear force and the displacement of the
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tool tip are the same which will cause energy to transfer from the workpiece to the
tool. Since the cutting depth in the B to A path is larger than the A to B path
and considering the approximate equality of the two paths, the energy transferred
to the tool is greater than the energy lost from it. This surplus of energy of the
tool will sustain its vibrations against damping losses and as a result the tool will
continue its vibrations [11,14].

4.2. Waviness Regeneration

In machining operations, machining is done on a surface that has already been
produced by the tool in the previous pass. This surface has been produced by
the previous tooth in the milling operation and by the previous revolution in the
turning operation. If for any reason (e.g., bending vibrations of the workpiece
due to the cutting force) a relative oscillation is produced between the tool and
the workpiece, the tool tip will encounter a wavy surface in the next pass (the next
revolution in the turning operation and the next tooth in the milling operation) and
consequently it will lead to an alternating change in chip thickness and the result
will be the alternating change of the machining force. This alternating cutting force
will intensify vibrations and their amplitude will vary depending on the machining
conditions. Thus, the newly generated surfaces will also be wavy. Accordingly,
the generation of wavy surfaces will ceaselessly continue and the phase difference
between wavy surfaces in two consecutive passes will be constrained by the geometry
of the machining operation; this phase difference in turn affects the regeneration of
wavy surfaces (Fig. 4).

In the turning operation, the phase difference between two consecutive waves
can be denoted by the relationship between the revolution speed of the spindle n
and vibration frequency N+ ε

2π −
f
n‘ where N is the maximum number of full waves

on the workpiece so that ε
2π < 1. In other words, full waves and a part of a full wave

( ε
2π ) are produced on the workpiece surface. As can be seen in th figure, depending

on the value of, chip thickness variation (Y0−Y ) can be either equal to zero (if ε is
zero) or a maximum value. Clearly, if ε is zero, there will be no chatter, since the
wavy surfaces in two consecutive passes will be parallel and consequently there will
be no change in the cutting force which is due to chip thickness variation.

4.3. Analysis of the Chatter in Turning Process

Assume that in turning process, the tool is machining in the direction orthogonal to
the workpiece axis. The bending vibrations of the workpiece due to the cutting force
will generate a wavy surface on its cross-section. If the workpiece is modeled using
a model with one degree of freedom as specified in Fig. 5, the vibration equation of
the system will be of the form of relation (1):

my ÿ (t) + cy ẏ (t) + kyy (t) = F (t) (19)

The machining force F (t) can be calculated from the following relation:

F (t) = kfah(t) (20)
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where Kf is the shear strength and is the chip width; is the dynamic (instantaneous)
thickness of the chip expressed by the nominal thickness of the chip (h0) and vibra-
tion function on the machining surface in the current machining pass, y(t), and the
previous machining pass, y(T − t) is the rotation period of the spindle.

h (t) = h0 + y (t− T )− y(t) (21)

Thus, the machining force depends on the relative vibration between the tool and
the workpiece in the current and previous pass combining the relations will yield a
delay differential equation in the temporal domain:

mÿ + cẏ + ky = kfa[h0 + y (t− T )− y (t)] (22)

The above equation is expressed in the Laplace domain as follows:[
ms2 + cs+ k

]
y (s) = k a[h0 +

(
e−sT − 1

)
y (s)] (23)

On the other hand,

y (s) = F (s)φ(s) = kfah(s)φh(s) (24)

where ϕ(s) is the transformation function of the relative vibration of the tool and
the workpiece. Combination of the above relations gives:

h (s) = h0 + (e−sT − 1)kfah(s)φh(s) (25)

Thus, characteristic equation of chatter vibrations is expressed as:

Hs

H0
− 1

(ϑ−sT − 1) hfaϕs
(26)

In other words, the above equation is the transformation function between the nom-
inal and instantaneous thickness. The stability of chatter vibrations is represented
as a control diagram; nominal thickness h0, system input, and system output are
a function of instantaneous vibrations y(t). The stability of the system against self-
excited vibrations will be equivalent to the stability of the above closed-loop control
diagram. The stability of a closed-loop system is determined by the roots of the
characteristic equation and if the real component of the root of the characteristic
equation is negative in the Laplacian domain, the system will be stable. The root
of the characteristic equation is in the stability boundary of the system, where is
the angular chatter frequency. Thus,

1 +
(
1− e−jωcT

)
kfaϕ ϕ (jc) = 0 (27)

If the real and imaginary parts of the transformation function of system vibration
be as

ϕ (jωc) = G (ωc) + jH(ωc) (28)

Since

e−jωcT = cos (ωcT )− jsin(ωcT ) (29)
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The combination of the above relations gives:

{1 + kja[G(ωc)(1− cos(ωcT ))−H(ωc) sin(ωcT )]}+

j{kfa[G(ωc) sin(ωcT ) +H(ωc)(1− cos(ωcT ))]} = 0 (30)

which will be obtained from the latter relation of the system of equations.

G(ωc) sin(ωcT ) +H(ωc)(1− cos(ωcT )) = 0 (31)

and

1 + kfa[G(ωc)(1− cos(ωcT ))]−H(ωc)sin (ωcT ) = 0 (32)

In the above relations, chip width ( a ) is a parameter that depends on the machining
process. Thus, the goal is to determine the chip width values that put the system
at the stability boundary.

If is the phase angle of the transformation function of the system at the stability
boundary, then,

tan Ψ = H(ωc)/G(ωc) (33)

And finally we come to the following relation:

alim =
−1

2kfG(ωc)
(34)

The above relation indicates the maximum cutting width which can exist without
chatter vibrations. Since cutting width is a quantity whose negative value has
no physical meaning, the above equation only holds for the negative values of the
real part of the transformation function. This equation expresses that the critical
cutting width has an inverse relationship with the flexibility if the machine tool; the
more flexible the structure and the greater the cutting strength are, the lower will
be the critical cutting width value and chatter vibrations will start at lower values
of cutting width.

5. Analysis and Dynamic Modeling of Cutting

In the present paper, the dynamic model of the studied machining system is as
below, where the dynamics governing cutting are described by the Mathieu equation
and this behavior of the equation has been modeled using the Simulink extension
of the Matlab Software.

Figure 7 The dynamic model of the machining system
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I =

∫ t

0

πd

60
(n0t+ ∆n sinωN t) dt =

πD

60
(n0 + ∆nsin(ωN t))

2
(35)

c(1) =
πDm∆nωn

60
cos
(
ωN t

)
+
πDc

60

(
n0 + ∆n sin(ωN t)

)
(36)

k(1) = k , b1(1) = −c3(t)(b0 + c1) cos θ (37)

c1 = a0 cot(kγ + k′γ) + tan θ c3 =
2τS sin(β − γ)

cot(β − γ)− sin(β − γ)
(38)

Finally, we obtain:

my′′(t) + cy′(t) + ky(t) = −c3(t) cos θ ((b0 + c1)y(t)) (39)

Figure 8 Amplitude versus time for n0 = 850, y = −8 and b = 0.2 (towards stability)

In order to examine the effects of the parameters y′ and h0, on the chatter
phenomenon, different pairs of effective parameters have been simulated and some
of them are presented in Figs. 8 and 9.

Figure 9 Amplitude versus time for n0 = 325, y = −8 and b = 0.2 (stability state)
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6. Conclusion

In obtaining the natural frequencies of a system, if the load (the force exerted on
the cylindrical workpiece due to closing the mandrel) is exerted on the workpiece,
the natural frequency of the system (ω) will decrease due to the reduction of beam
stiffness. If we draw the diagram of (mandrel force) in (natural frequency), the
critical point for the force will be: Pcr = 6730 N.
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